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Introduction

Soil application of bio-inoculants, insecticides, 
organic amendments, and mineral fertilizers is a 
regularly used way to enhance crop yield and 
economic return (Mahmud et al., 2021). Despite 
the implementation of contemporary agricultural 
practices, illnesses lead to a loss of more than 10% 
of total crop production, even with the use of 
existing control methods such as seaweeds. Fungi 
can inflict significant harm in agriculture, leading 
to substantial reductions in output, quality, and 
profit (El Boukhari et al., 2020; Toledo et al., 2023). 
Fungicides safeguard agricultural products from 

deterioration and contamination by hazardous 
fungal toxins (Zadravec et al., 2022). Commercial 
cultivation of numerous crops, particularly fruits 
and vegetables, in humid climates necessitates the 
application of fungicides in disease control 
strategies. Typically, fungicides work by impeding 
the energy metabolism, obstructing biosynthesis, 
or modifying the cell membranes of the fungus 
(Gikas et al., 2022). There is less information 
regarding the impact of fungicides on the 
indigenous microbial community in soils, 
particularly Plant Growth Promoting Rhizobacteria 

The present study was conducted to find out compatibility of fungicides with 
different concentration such as Monocrotophos, Mancozeb, Tilt and Thiovit was 
tested on Bacillus subtilis. Among all the fungicides tested were enhanced the 
growth of Bacillus subtilis at all concentrations where as other fungicides like 
Monocrotophos, mancozeb, Tilt and Thiovit was compatible. Because it does not 
inhibits the growth of Bacillus subtilis when compared to Control (Sea weeds) plate. 
Among the all four chemical fungicides tested, exhibits better growth of Bacillus 
subtilis when compared to the Control (Sea weeds) plate. So the fungicides enhance 
the growth of Bacillus subtilis and all the fungicides were increased the growth of 
Bacillus subtilis. The present study concluded that mostly chemical fungicides were 
not compatible with Bacillus subtilis. From our results revealed that all of the 
fungicides tested were inhibit the growth of Bacillus subtilis at all the 
concentrations. Henc, the study suggested that the few of agrochemicals were also 
not compatible with Bacillus subtilis. 
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(PGPR) (Khoso et al., 2024; Sabaridasan, 2012). 
Some chemical components of fungicides can 
disrupt or hinder the physiological or metabolic 
functions of plants, impede electron transport 
reactions in chloroplasts, and decrease plant 
development (Shahid et al., 2018). Sea weed 
biological control chemicals protect roots by 
inhibiting phytopathogenic fungi and bacteria 
through antagonism (Vicente et al., 2023). 
Rhizosphere bacteria are effective in managing 
soil-borne plant diseases such as weeds (Saeed et 
al., 2021). Previous reports have indicated that 
many bacteria, including Bacillus subtilis, Bacillus 
sp., Serratia sp., and Arthobacter sp., have the 
ability to promote plant growth (Chhetri et al., 
2022; De Mandal et al., 2018; Hashem et al., 2019).  

Bacillus subtilis is a rhizobacterium that promotes 
plant development. Specific strains of Bacillus 
subtilis synthesize secondary compounds that are 
harmful to plant-pathogenic fungi (Jan et al., 2023). 
Enhancing the production of antifungal chemicals 
in bacteria can help them reduce plant infections 
and improve their ecological competitiveness in 
the rhizosphere (Ayaz et al., 2023). Particular 
strains of Bacillus subtilis and Pseudomonas putida 
offer biological control of fungal plant diseases and 
harmful rhizobacteria, resulting in enhanced 
growth responses that go beyond just disease 
improvement (Bonaterra et al., 2022).  

Soil microorganisms are affected by alterations in 
their soil environment (J. Li et al., 2022), and 
research has demonstrated that the microbial 
community shifts during fertilization (Dincă et al., 
2022). Fertilizer can enhance the growth of 
microbial populations by providing nutrients and 
may influence the makeup of specific microbial 
communities in the soil (Zhang et al., 2022).  

Microbial biomass and enzyme activity are now 
acknowledged as early markers of soil stress or 
changes in productivity. Moreover, there is much 
evidence indicating that they can be utilized to 
assess the impact of management and land use on 
soils (Q. Qu et al., 2023; R. Qu et al., 2023). The 
study aimed to evaluate the effects of pesticides 
and seaweed fertilizers on the beneficial soil 
microbe Bacillus subtilis.  

Materials and Methods 
Collection and isolation of samples  

The soil sample was collected from the paddy field 
in the current investigation. The material 
underwent dilution using the conventional serial 
dilution approach to promote bacterial growth. 
After the incubation period was finished, the 
colonies were examined. The detected colonies 
were plated again to isolate single colonies using 
the streaking method. The morphology of isolated 
colonies was identified using the Gram staining 
method. Gram-positive results in a purple or blue 
color, while Gram-negative results in a pink or red 
color. The genus confirmation was conducted 
using biochemical tests in the laboratory to 
identify specific beneficial organisms. The selected 
media were ultimately utilized for species 
confirmation and identification (Wilson et al., 
2017). 

(T1) Mancozep 

It controls numerous fungal diseases such as 
blight, leaf spot, rust, downy mildew, scab, and 
various other diseases. This fungicide is commonly 
used to control infections in potatoes, tomatoes, 
cucurbits, beets, berries, and rust on various cereal 
crops, vegetables, and ornamental plants such as 
roses, carnations, beans, apples, and plums. It is 
utilized for foliar application and seed treatment in 
various agricultural and horticultural crops. It is 
non-phytotoxic when taken as recommended. This 
fungicide is quite compatible with the majority of 
commonly used fungicides and insecticides.  

(T2) Propinazole  

This is a systemic foliar fungicide that has both 
protective and curative effects. It controls illnesses 
caused by Erysiphe graminis, Puccinia spp., 
Rhynchosporium secalis, and Septoria spp. As well 
as in Rhizoctonia solani and Helminthosporium 
oryzae in rice; Cercospora in groundnuts; Monilinia 
and Sphaerotheca in stone fruits; and 
Helminthosporium in maize. It is non-phytotoxic 
when used correctly and can be used alongside 
other fungicides. 
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(T3) Thiovit (Sulphur) 

Non-systemic fungicides and acaricides that act 
protectively. It controls scab on apples, pears, and 
peaches; powdery mildews on various crops such 
as fruit vines, beets, cereals, ornamentals, 
cucumbers, vegetables, and forestry; and 
acarinosis of vines. Phytotoxic to cucurbits, rasp 
berries, and specific "sulphur-shy" types of various 
crops. Avoid mixing with oil, as it may cause 
phytotoxicity.  

(T4) Monocrotophos 

Monocrotophos is an organophosphate pesticide. It 
is highly toxic to birds and humans, leading to its 
prohibition in the U.S., the E.U., and several other 
nations; yet, it remains accessible in India. It is 
mostly utilized in agriculture as an inexpensive 
pesticide. However, it is also commonly utilized as 
a method for suicide. Nevertheless, this herbicide 
has wide-ranging effects on humans and other 
creatures. Toxicity effects have been observed in 
terms of cardiotoxicity and acute effects on the 
public environment. 

Preparation of media    

The glassware’s and other requisite materials were 
cleaned and sterilized before being used for the 
preparation media. The LB media contains of 
Peptone (10g / 1000ml), Yeast Extract (5g / 
1000ml), and Sodium Chloride (5g / 1000ml). 
These are weighted using the electric balance and 
mixed there components with sterile distilled 
water before making the final volume to 1000ml. 
The media is sterilized at 15lbs for 15min and 
allowed to cool before the use. The medium is 
dispensed into 5 flasks and used as a stock media.  
Each 100ml media was mixed individually with 
fungicides in different concentration (0ppm, 
1000ppm, 1500ppm, 2000ppm, 2500ppm) and 
used for testing their effect on Bacillus subtilis.   

Culture and maintenance of Bacillus subtilis     

Bacillus subtilis was kept and maintenance active 
at room temperature in liquid LB medium for use 
in several experiments in this work (Dervaux et al., 
2014). 

Serial dilution preparation 

9 ml of sterile distilled water was evenly 
distributed into sterile test tubes under aseptic 
conditions (Di et al., 2023). 1 ml of actively 
growing Bacillus subtilis from the stock culture is 
mixed with 9 ml of sterile distilled water to create 
a 10-1 dilution. 1 ml of the sample is combined with 
9 ml of distilled water to create a 10-2 dilution. A 
serial dilution was performed up to a 10-10 
concentration. 

Pour plating 

Pour plating was performed on sterile petri plates 
in aseptic conditions. Bacillus subtilis was cultured 
in two distinct dilutions of 10-9 and 10-10. 
Approximately 1 ml of culture from the previous 
two dilutions was transferred into sterile Petri 
plates. Once the medium with different amounts of 
fungicides and bactericides was warm, it was 
added to the Bacillus subtilis that had already been 
spread out. The mixture was then gently stirred to 
make sure that the fungicides and bactericides 
were spread out evenly (Sanders, 2012). The 
cultures were kept at ambient temperature for 48 
hours before being observed. Colony counting data 
was collected and tabulated for study. 

Results and Discussion 

Chemical fungicides such as Monocrotophs, 
Mancozeb, Tilt, and Thiovit were tested for 
compatibility with seaweeds as a control for 
Bacillus subtilis in the study.  

Impact of monocrotophos on the development of 
Bacillus subtilis after 48 hours of incubation 

Bacillus subtilis was exposed to several 
concentrations of the antibiotic Monocrotophos 
(500 ppm, 1500 ppm, 1000 ppm, and 2000 ppm). 
No growth was observed in the 10-9 and 10-10 
dilutions after 48 hours of incubation. The control 
(seaweeds) plate displayed cell concentrations of 
25×10-9 cells/ml and 65×10-10 cells/ml. The study 
found that the antibiotic monocrotophos, at 
various concentrations, resulted in 100% 
inhibition of Bacillus subtilis growth (Table 1). 
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Table 1. Effect of Monocrotophos on Bacillus subtilis after 48 hours incubation 

Monocrotophos (ppm) 

Colony forming Unit / ml 

10-9 dilution Enhance/Inhibit of 
growth 

10-10 dilution Enhance/Inhibit of 
growth R1 R2 Mean R1 R2 Mean 

Control (Sea weeds) 130 120 125 0% 60 70 65 0% 

500 - - - -100% - - - -100% 

1000 - - - -100% - - - -100% 

1500 - - - -100% - - - -100% 

2000 - - - -100% - - - -100% 

 

Impact of Mancozeb on Bacillus subtilis growth 
after 48 hours of incubation 

Bacillus subtilis was exposed to varying 
concentrations of the antibiotic Mancozeb: 500 
ppm, 1500 ppm, 1000 ppm, and 2000 ppm. No 
growth was observed in the 10-9 and 10-10 dilutions 
after 48 hours of incubation. The control (sea 
weeds) plate displayed cell concentrations of 
100×10-9 cells/ml and 65×10-10 cells/ml. The study 
indicated that the antibiotic Mancozeb, at various 
concentrations, exhibited complete suppression of 
Bacillus subtilis growth (Table 2). 

 

Impact of Tilit on the development of Bacillus 
subtilis following 48 hours of incubation 

Bacillus subtilis was exposed to varying 
concentrations of fungicide. The growth was 
measured at 25×10-9 cells/ml and 10×10-10 
cells/ml in a 1000 ppm concentration. Cell 
concentrations were measured at 45 x 10-9 
cells/ml and 25×10-10 cells/ml, while at a 
concentration of 2000 ppm, the concentrations 
were 55×10-9 cells/ml and 25×10-10 cells/ml. At a 
dosage of 2500 ppm, there were 70×10-9 cells/ml 
and 45×10-10 cells/ml after 48 hours of incubation. 
Therefore, it was determined that as the 
concentration of fungicide increased, the growth of 
the bacteria reduced (Table 3). 

 
Table 2. Effect of Mancozeb on Bacillus subtilis after 48 hours incubation 

Mancozeb (ppm) 

Colony forming Unit / ml 

10-9 dilution Enhance/Inhibit of 
growth 

10-10 dilution Enhance/Inhibit of 
growth R1 R2 Mean R1 R2 Mean 

Control (Sea weeds) 90 110 100 0% 90 110 100 0% 

500 - - - -100% - - - -100% 

1000 - - - -100% - - - -100% 

1500 - - - -100% - - - -100% 

2000 - - - -100% - - - -100% 
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Table 3. Effect of Tilt on Bacillus subtilis after 48 hours incubation 

Tilt (ppm) 

Colony forming Unit / ml 

10-9 dilution Enhance/Inhibit of 
growth 

10-10 dilution Enhance/Inhibit of 
growth R1 R2 Mean R1 R2 Mean 

Control (Sea 
weeds) 210 180 195 0% 90 110 100 0% 

500 70 80 75 -61% 40 40 40 -60% 

1000 60 50 55 -71% 10 20 15 -85% 

1500 30 40 35 -82% 20 0 10 -90% 

2000 10 30 20 -89% 0 10 5 -95% 

 

Impact of thiovit on the proliferation of Bacillus 
subtilis following 48 hours of incubation 

Bacillus subtilis was exposed to varying 
concentrations of Thiovit (500 ppm, 1000 ppm, 
1500 ppm, and 2000 ppm). After 48 hours of 
incubation, the colony counts were as follows: 500 
ppm resulted in 50×10-9 cells/ml and 25×10-10 
cells/ml, while 1000 ppm yielded 20×10-9 cells/ml 
and 2×10-10 cells/ml. However, growth was 
inhibited at 1500 ppm and 2000 ppm 
concentrations. At 1500 ppm, the cell 
concentrations are 35×10-9 cells/ml and 20×10-10 
cells/ml. At 2000 ppm, the cell concentrations are 

15×10-9 cells/ml and 2×10-10 cells/ml. The results 
indicated that varying concentrations of thiovit 
(500 ppm, 1000 ppm) promoted the growth of 
Bacillus subtilis compared to the control group (sea 
weeds). Conversely, concentrations of 1500ppm 
and 2000ppm resulted in the lowest colony counts 
compared to 500ppm and 1000ppm. Therefore, 
Bacillus subtilis growth was compatible at 
concentrations below 1000 ppm (Table 4). 

 

 
Table 4. Effect of Thiovit on Bacillus subtilis after 48 hours incubation 

Thiovit (ppm) 

Colony forming Unit / ml 

10-9 dilution Enhance/Inhibit of 
growth 

10-10 dilution Enhance/Inhibit of 
growth R1 R2 Mean R1 R2 Mean 

Control (Sea weeds) 40 40 40 0% 20 30 25 0% 

500 40 60 50 25% 30 20 25 25% 

1000 50 40 45 12% 20 20 20 0% 

1500 30 40 35 -12% 0 10 10 -60% 

2000 10 20 15 -60% 2 2 2 -92% 
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Discussion 

Modern agriculture relies on the use of fossil fuel-
based inputs such as chemical fertilizers, 
herbicides, and high-energy-intensive farm 
equipment to increase efficiency. High-energy 
input technologies have unquestionably boosted 
production levels (Woods et al., 2010). Farmers 
are increasingly worried about the negative impact 
on soil productivity and environmental quality, 
which emphasizes their social responsibilities 
beyond just being agribusiness owners (Muhie, 
2022).  

In 1965–1966, high-yielding varieties were 
introduced in the Indian subcontinent in 
anticipation of a famine outbreak as part of the 
'Green Revolution' technology. The high-yielding 
variety produced an extraordinarily abundant 
amount of food grains, meeting the demand to feed 
the increasing population (Swaminathan, 2001). 
These high-yielding types, although productive, 
were more vulnerable to pests compared to older 
varieties. To combat these pests, a significant 
quantity of chemical insecticides were utilized. 
This resulted in environmental damage, greater 
pest resistance, insect resurgence, and higher 
levels of chemical residues in agricultural 
products. As the pollutants seeped into water 
sources, groundwater was contaminated (Dang et 
al., 2017; Sánchez-Bayo, 2021).  

India is expected to produce 250 million tons of 
agricultural grains by 2020. Between 1965 and 
1975, the production of food grains reached 2.48 
million tons by utilizing 23.15 lakh million tons of 
chemical fertilizer and 47091 tons of chemical 
insecticides during the initial phase of high-
yielding variety production (Ansari & Sheereen, 
2022). In the past, NPK materials and organic 
manure and green manure were highly valued. The 
modernization of agriculture led to a gradual 
depletion of organic manure, which is a significant 
factor in determining fertility (Dhaliwal et al., 
2023).  

The soil contains various important components 
necessary for plant growth. Reducing the use of 
organic manure led to the need for supplementary 
micronutrients in the form of artificial salts. To 
utilize fertilizers effectively, ensure efficient 
utilization, and maintain a balanced amount of all 
important plant nutrients, This also applies to pest 
control (Köninger et al., 2021; Thapa et al., 2021). 
The need to attain sustainable food production 
through eco-friendly nutrition and pest 
management technology is increasingly recognized 
in light of this worrying scenario. It is anticipated 
that biopesticides will substitute a minimum of 
10% of the synthetic pesticides in present use 
(Fenibo et al., 2021; Pathak et al., 2022). For 
sustainable agriculture, it involves combining 
chemicals and biological substances in fertilizer 
delivery systems. However, it merges conventional 
conservation-focused approaches with 
contemporary innovations like enhanced seeds 
(Akhtar et al., 2022; Magnabosco et al., 2023). 
Modern equipment incorporates weed 
management systems that integrate nutrient 
supply with nitrogen-fixing bacteria, phosphorus 
solubilizers, and other biological agents. The study 
found a notable variance in how different 
compounds affect the radial growth inhibition 
percentage of Bacillus subtilis (Gupta et al., 2022). 
Bacillus subtilis thrived on culture media with 
fungicides at concentrations of up to 1000 ppm. 
After 48 hours, the radial mycelial growth data of 
Bacillus subtilis at the recommended dosages of 
51% fungicides showed a significantly higher 
growth percentage compared to other treatments 
(Y. Li et al., 2023; Yu et al., 2021). 

It appears that the fungicides did not inhibit the 
growth of Bacillus subtilis. Studies indicate that 
Bacillus subtilis can be safely utilized in integrated 
pest management for disease control in seaweeds, 
particularly when used with fungicides that 
include 51%. However, when combining other 
fungicides with bactericides, caution must be 
exercised. One must establish specific intervals 
when applying Bacillus subtilis and other 
fungicides. The radial mycelial growth (in cm) 
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showed that agrochemicals do not hinder Bacillus 
subtilis, but all other fungicides do restrict the 
radial mycelial development.  

Previous researchers have noted similar findings, 
and our analysis validates this. When the 
pathogenic organism dominates, generating high-
pressure conditions, the use of Bacillus subtilis may 
not effectively control the disease in sea weeds. 
Advocates of the organic-inorganic management 
strategy suggest using a mix of biological agents 
and chemical fungicides (Isidori et al., 2021; Lee et 
al., 2022). This study is significant as it shows the 
compatibility of Bacillus subtilis with fungicides 
like kavanch, out sore, tilt, and thiovit. It 
demonstrates that these chemical fungicides can 
be used in conjunction with Bacillus subtilis to 
control fungal diseases in agricultural crops. 
Several studies suggest that field evaluations 
should be conducted to examine the interactions 
between Bacillus subtilis and agrochemicals at the 
field level. 

Conclusion  

The study tested the compatibility of fungicides 
like Monocrotophos, Mancozeb, Tilt, and Thiovit on 
Bacillus subtilis. All tested fungicides enhanced the 
growth of Bacillus subtilis at all concentrations, 
while other fungicides were compatible. However, 
none inhibited the growth of Bacillus subtilis 
compared to the control (Sea weeds) plate. The 
study concluded that most chemical fungicides 
were not compatible with Bacillus subtilis, and a 
few agrochemicals were also not compatible. The 
results showed that all tested fungicides inhibited 
the growth of Bacillus subtilis at all concentrations, 
indicating that agrochemicals are not suitable for 
treating Bacillus subtilis 
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